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The universe appears from recent observational results to be a highly structured 
but also highly disordered medium. This accounts for the difficulties with a 
conventional statistical approach. Since the statistics of  disordered media is an 
increasingly well-studied field in physics, it is tempting to try to adapt its methods 
for the study of the universe (the use of correlation functions also resulted from 
the adaptation of  techniques from a very different field to astrophysics). This is 
already the case for the fractal analysis, which, mainly developed in microscopic 
statistics, is increasingly used in astrophysics. I suggest a new approach, also 
derived from the study of disordered media, both from the study of percolation 
clusters and from the dynamics of so-called "cluster aggregation" gelification 
models. This approach is briefly presented. Its main interest lies in two points. 
First, it suggests an analysis able to characterize features of unconventional 
statistics (those that seem to be present in the galaxy distribution and which 
conventional indicators are unable to take into account). It appears also a priori 
very convenient for a synthetic approach, since it can be related to the other 
indicators used up to now: the link with the void probability function is very 
straightforward. The connexion with fractals can be said to be contained in the 
method, since the objects defined during this analysis are themselves fractal: 
different kinds of fractal dimensions are very easy to extract from the analysis. 
The link with the percolation studies is also very natural since the method is 
adapted from the study of percolation clusters. It is also expected that the 
information concerning the topology is contained in this approach; this seems 
natural since the method is very sensitive to the topology of the distribution and 
posses some common characteristics with the topology analysis already 
developed by Gott et al. (1986). The quantitative relations remain however to 
be calculated. Additionally, this approach concerns the variation of  clustering 
properties of galaxy groups and clusters with their richness. Although such 
studies have been made for various cases (like comparison of the correlation 
functions between galaxies and clusters, or between clusters of different richness 
classes), the analysis presented here deals with it in a more systematic and 
synthetic way. 

1. I N T R O D U C T I O N  

T h e  e x p l o r a t i o n  o f  t h e  u n i v e r s e  is a v e r y  a c t i v e  f i e ld  o f  r e s e a r c h ,  w i t h  

t h e  g o a l  t o  u n d e r s t a n d  t h e  s t r u c t u r e  o f  o u r  c o s m o s .  A m o n g  c o s m o l o g i c a l  
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models, the class of the big-bang models has a large favor among astrophy- 
sicists and cosmologists, and they are used as a general frame for astrophy- 
sics. Since very few arguments have been advanced against them, it is very 
important to explore their weak points, to check if they resist or not a deep 
analysis, and if they can or cannot be refuted. 

The study of  the distribution of the galaxies, and more generally of 
the luminous matter in the universe, may provide crucial tests. It has been 
and still is a very active area of research, with the result that the distribution 
of the galaxies in the universe appears less simple than was suspected: at 
scales larger than that of clusters of galaxies, the matter seems to be organized 
in flattened, filamentary, lacunary structures. This picture, very different 
from a homogeneous distribution, has led cosmologists to ask if the universe 
is really homogeneous at a large scale, and if the cosmological principle 
(at the basis of the big-bang models) is justified. The answer is probably 
yes, but the big-bang models may suffer from difficulties, even without 
exploring these extremely large scales, since it appears very difficult to 
understand how galaxies and other structured systems did appear in a 
homogeneous universe. Many models of galaxy formation have been pro- 
posed, with various successes, but no one appears to be entirely satisfactory. 
There is an urgent need to check them, in order to finally know if galaxy 
formation is possible in the frame of the big-bang models. For this task, 
one possibility is to compare the predicted distribution of galaxies with 
observations. This will be done here. 

In Section 2, I give a brief qualitative view of the matter distribution as 
it appears now. In Section 3, I present the basic statistical analysis used up 
to now. In Section 4, I show that high-order indicators allow one to get 
complementary information; and, in Section 5, I present some possible 
prospective work. 

2. A QUALITATIVE VIEW OF THE GALAXY DISTRIBUTION 

It was suspected for more than a century that the universe is made of 
separate structures, the galaxies. They are the basic objects of study for 
cosmology, but it is only from the beginning of the century that we have 
known that galaxies themselves are not randomly distributed in the universe, 
but are organized into larger structures. 

This organization appears in two-dimentional views of the sky, in 
photographic plates or celestial maps: the angular distribution of galaxies 
designates groups, clusters, filaments, and even larger structures which seem 
to occupy a large fraction of the sky. These impressions are confirmed by 
the true spatial analyses, when the third dimension, i.e., the distance from 
the galaxies to us, becomes available. 
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Cosmologists try to recognize the exact nature of these structures, up 
to the largest scales, as well to understand how they were formed. Galaxies 
have typical sizes of a few tens of kpc (1 kpc -- 1000 pc; 1 pc = 1 parsec-- 3 • 
108 cm); their average separation is of the order 1 Mpc ( = 10 6 p c ) .  Unfortu- 
nately, if their positions over the sky (i.e., their celestial coordinates) are 
known without ambiguity, this is not the case for their distances to us, and 
this imperfect knowledge strongly limits our ability to explore the structure 
of  the universe. Most of the galaxies have their distance estimated only 
through their redshift z. In the conventional cosmological interpretation, z 
is related to the distance via the Hubble law: c z  = H o D  (for the galaxies 
not too far away from us), where c the velocity of  light, and/40 is defined 
as the Hubble constant. This law expresses the expansion of the universe; 
it allows us to estimate the distance D of a galaxy after having measured 
its redshift. Unfortunately, the Hubble constant is not known with a good 
precision and there is a strong controversy--the distant scale p rob lem--  
concerning its value, between limits of 50 and 100 km sec -1 Mpc -1. In the 
following, I will assume for convenience a value of  100 km sec -I Mpc -~ for 
expressing the cosmic distances, but it must be kept in mind that all distance 
determinations from redshifts suffer from the relative uncertainty on H0. 

Although the Hubble law is probably well verified statistically, it leads 
to large uncertainties when applied to individual objects. The reason is that 
galaxies have proper velocities in addition to their Hubble (expansion) 
velocities, due, for instance, to the gravitational attraction of nearby mass 
concentrations, like clusters or superclusters. Since the (unknown) proper  
velocity contributes to the observed redshift, a wrong estimation of the 
distance is obtained. Although I will not discuss further this problem (which, 
for the local galaxies, is known as the problem of Virgo infall corrections), 
it should be kept in mind that the distances of  galaxies, when obtained 
from redshifts, are largely uncertain. There are fortunately other methods 
for determining the distances. They are, however, very time consuming, and 
only a few galaxies have their distances measured independently of redshifts. 
Although the situation is quickly improving, the majority of statistical studies 
up to now involve distances estimated from the redshifts. 

Mapping the three-dimensional sky has been a long and difficult task; 
we have begun to have a knowledge of the spatial distribution of galaxies, 
at least not too far from us. Locally, our own galaxy (the Milky Way) is a 
member of the so-called Local Group. This local concentration gathers 
about 20 galaxies in mutual gravitational interaction, so that it is not a pure 
geographical coincidence, but a real physical association. Among other 
members, the best known is the Andromeda galaxy, also called Messier 31. 
The size of  the Local Group is about 1 Mpc. 

Most of the galaxies lie much farther than the Local Group, but they 
are also members of groups, or clusters. The nearest cluster is the Virgo 
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cluster, at about 10 Mpc from us. It is much larger than the Local Group, 
but still poorer  and smaller than a typical cluster of galaxies. It is dominated 
by a huge galaxy in its core, called Messier 87. Much further is the Coma 
cluster, at about 100 Mpc from us. Larger and richer than Virgo, it gathers 
thousands of galaxies. More than 2000 other clusters have been found over 
the sky, with a large diversity in sizes, richnesses, and characteristics. Their 
typical size is about 5 Mpc. But clusters of galaxies are not the ultimate 
structures in the universe. Around us, the distribution of matter in the 
nearest tens of Mpc makes up what has been called the Local Supercluster, 
or the Virgo Supercluster. This very large structure was first recognized by 
Grrard  de Vaucouleurs around 1958. It contains many clusters, groups, and 
isolated galaxies, and appears as a flattened structure, shaped like a disk, 
about 1 Mpc wide and 20 Mpc long. 

Superclusters seem to be characteristic of the organization of matter 
in the universe. Their existence was proven beyond any doubt by the 
systematic measurements of redshifts in the last decades. All appear 
elongated, or flattened, or both, with characteristic lengths between 20 and 
100 Mpc. Complementary, large voids also exist between the galaxies. A 
void is defined as a region of the universe inside which no galaxy is present. 
Recent observations have proved that voids are common between the 
galaxies, at all scales. Clusters and superclusters may be analyzed as positive 
density fluctuations (see below), voids as negative ones. There is, however, 
no consensus on whether the voids are devoid of any material content, or 
only of galaxies and luminous matter. 

We do not have a clear vision of the distribution of the galaxies at 
scales larger than those of  the superclusters, and the organization of  the 
cosmic matter at scales beyond 25 Mpc remains uncertain. We know that, 
at these large scales, the matter is organized into flattened, elongated 
structures, with numerous voids between them. Galaxies seem to occupy a 
kind of cellular network between the voids, as suggested, for instance, by 
Einasto and co-workers. Although a large number of astronomers would 
probably agree with the term, it remains to make quantitatively precise what 
could be the properties of  such a structure. Among other answers, future 
observations will probably tell us if superclusters are mutually connected, 
and if they are organized into larger systems. In any case, our explorations 
have not reached the scale at which the universe can be considered as 
homogeneous. Other observations suggest, however, that the universe can 
be seen as homogeneous beyond a scale of about 100 Mpc, justifying 
therefore the cosmological principle. 

One of  the goals of  the study of the galaxy distribution is to put 
constraints on the hypothetical processes by which these structures could 
have formed, i.e., the models for galaxy formation. For this approach, it is 
convenient to distinguish two ranges of scales. The so-called linear range 
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concerns the largest scales, beyond a limit which, although not precisely 
known, probably lies below 10 Mpc. The structures at these large scales 
(for instance, the shapes and distribution of superclusters, the presence of 
large voids, the cellular network) are thought not to have been subject to 
a strong dynamical evolution. Gravitational interactions have remained 
weak enough so that a linear treatment can be applied. The result is that, 
as astronomers believe, the distribution of matter at these linear scales 
results from a simple evolution of the initial conditions. This is not the case 
for the nonlinear range, at scales below about 10 Mpc. The structures are 
expected at these scales to result from a strong evolution which a conven- 
tional dynamical analysis cannot follow. 

Unfortunately, observations concerning the linear scales are incomplete 
and inhomogeneous (although the situation is improving rapidly). It is 
therefore difficult to quantify the information concerning these large scales. 
This task--necessary to confront observations with the predictions of the 
models--has  been initiated by various groups thanks to the introduction of 
new statistical tools, such as percolation, topological analysis, areas of 
isodensity contours, etc. I will, however, concentrate on the nonlinear range, 
where conventional statistical analyses have been applied successfully, with 
the use of  well-suited linear indicators. 

3. CORRELATIONS 

In order to compare observations with the predications of the models, 
suitable tools have been defined. A first piece of information comes from 
the analysis of  the density of galaxies in space, n(x). A density fluctuation 
is defined as 8n = n - ( n ) ,  where (n) is the average density of galaxies in 
space. We can also define a relative density fluctuation 8 (x) -- 8n/n, varying 
from place to place. An analysis in terms of 8 makes sense in the range 
where 8 is not too far from 1. Nevertheless, it is very important to realize 
that this density n fluctuates today, at all the scales where the universe has 
been explored; thus, for any three-dimensional catalog (up to size larger 
than, say, 50 Mpc), the measured value of  n cannot be considered as the 
average value for the universe. In other words, these catalogs are not fair 
samples of the universe. 

Among the different possible indicators possible, the two-point correla- 
tion function (hereafter CF) has been the most popular. Its introduction 
results from the adaptation of the BBGKY formalism to galaxy statistics 
(see, for instance, Peebles, 1980). It can be defined in a probabilistic way: 
for a distribution of galaxies of average density n, the probability for finding 
one galaxy in the elementary volume dV around x is P = n(x) dV. For a 
homogeneous distribution (stationary in the language of statistics), n would 
be constant in space. The probability of finding simultaneously a galaxy 
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in dV1 around xl and a second one in dV2 around x2 is written as 
P~2=n2[l+~(r~2)], which defines the two-point correlation function ~:. 
Homogenei ty  and isotropy imply that ( is only a function of r = r12 = r~ - r 2 . 
It is convenient to remark that this definition is in fact a conditional one: 
P~2 is the probabili ty to find two galaxies, given that the probability to find 
one is P. This is the reason why the calculation of ~ is subject to normalization 
problems, as I indicate below. 

In the case where galaxies are randomly distributed, the presence of 
a galaxy in x~ does not depend on the presence of another one in x2. The 
joined probabili ty is then the product of  the two elementary probabilities, 
and ~ has a zero value. This indicates how ~: measures the excess probabili ty 
of  clustering, with respect to a random distribution taken as a reference. 
Practically, this probabilistic definition has been widely used since the 
pioneering work of Peebles. An intuitive insight might also be gained from 
the fact that 1 + s c is a measure of  the average number  of  neighbors at a 
distance r f rom a galaxy, in excess of  a pure random distribution. This 
helps us to understand in which sense ~ measures the clustering properties 
of  galaxies. It can also be remarked that ( is the autocorrelation function 
for the density of  galaxies: (n(x+ r)n(x)) = ( tT (x ) )2 [1  + ~ : ( r ) ] ,  where the 
averages are taken over space. 

The two-point correlation functions have been measured from different 
positions in the universe. First measurement  came from two-dimensional 
catalogs only, giving the angular positions of  galaxies. For their analysis, 
a two-dimensional correlation function w(O) is defined between galaxies 
separated in the sky by an angle 0. Its definition is analogous to that of  the 
three-dimensional correlation function, except that the three-dimensional 
distance r is replaced by the angular distance 0: w measures the probabili ty 
of  finding two galaxies in the sky separated by 0. The knowledge of w(O) 
allows one to estimate ~:(r) by a procedure of  deprojection, provided that 
we know the average depth (i.e., the average distance of the galaxies to us) 
of  the catalog. When three-dimensional catalogs became available, ~: was 
estimated directly. 

All reported results agree now that, in first approximation,  the correla- 
tion function of galaxies may be fitted by a universal power law ~: = (r/ro) 7, 
with y = 1.8 and r0, the correlation radius, around 5 Mpc. There is, however, 
no agreement concerning the value of ~: beyond 10 Mpc, so that these 
estimations concern the nonlinear range only. Unfortunately, it is not 
possible to calculate analytically the dynamical development of  ( during 
the nonlinear phase, so that the models of  galaxy formation cannot be 
checked directly with this function. The development of  ~: can be followed, 
however, during the nonlinear regime with numerical simulations. As a 
matter of  fact, the matching with the observed value (level and shape) is 
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used as a kind of normalization for these simulations: astrophysicists have 
chosen a criterion using this function to decide when a simulation must be 
stopped, i.e., to choose which instant in the time coordinate of the simulation 
is to represent the present state of the universe. It is important to realize 
that this requirement-- that  the simulation provides both the shape and level 
of ~:--has already led to the rejection of some models for galaxy formation, 
namely the hot dark matter models, and has required the introduction of 
the concept of biased galaxy formation. It is clear, however, that this test 
is very crude, and not sufficient to definitely quality a model. To improve 
the situation, other statistical tools have to be developed. 

3.1. Normalization 

Some difficulties have additionally been pointed out with the use of 
correlation functions. The reason is that the probabilistic definition requires 
the knowledge of the density. Measurements of ~: are performed by counting 
pairs of galaxies in a given catalog, and then dividing this measured quantity 
by a corresponding number for an uniform Poisson distribution (this number 
is introduced as the best way to estimate the volume sampled). Without 
getting into details, this requires assigning some value n to the spatial point 
density of  the catalog under study (i.e., the number of galaxies per unit 
volume). This can be seen as a normalization for calculating ~: and it is 
easy to show that any change in the normalization also leads to changes of 
the estimated value of s c (Lachi6ze-Rey, 1989). 

Important density fluctuations (for instance, large voids or super- 
clusters) are present in all the catalogs of galaxies, up to the sizes of these 
catalogs themselves, even for the largest available. We have therefore no 
absolute estimation of the density of galaxies (or of their luminosity func- 
tion) in the universe and this implies that no absolute value of  ~ can be 
measured: any measured value of ~: is relative to the given sample. The 
largest three-dimensional sample available now is the CfA catalog, so its 
measured value of ~ is the nearest to a universal one. In such a situation, 
the recent publication of a three-dimensional catalog of southern galaxies--  
the SSRS catalog (da Costa et aL, 1988)--appears as a major step, since it 
provides another sample, statistically independent from the CfA. Recently, 
Davis et al. (1988) have shown that the northern and southern galaxy 
distributions have the same value of s c. This seems to indicate that this value 
may be in fact universal. 

3,2. Fraetals 

On the other hand, it has been reported by Einasto et al. (1986) that, 
at scales smaller than 100 Mpc, the level of ~ apparently depends on the 
size of the sample in which it is estimated. This tendency has been interpreted 
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in different manners. Maurogordato and Lachi~ze-Rey (1987; hereafter 
ML1) suggested that it could be due to an effect of the luminosity segrega- 
tion, but they later showed that this is not the case (Maurogordato and 
Lachi~ze-Rey, 1989; hereafter ML2). On the other hand, Davis et al. (1988) 
and Lachi~ze-Rey et  al. (1989) have shown a similar effect in the southern 
hemisphere: They all conclude that this is not a luminosity effect. 

Calzetti et al. (1988) have suggested that this could be the sign of a 
fractal distribution of the galaxies. This is probably an overinterpretation 
of  the data. Although some fractal distribution would lead to the reported 
effect, the opposite is not necessarily true. More simply, the effect may be 
due to the strong variations of the density of galaxies at the relevant scales, 
~: being very sensitive to normalization effects, as reported above. Davis et  

al. (1989), for instance, explain it by the density gradients inside the catalogs. 
In passing, it should be remarked that, even if a fractal description is correct, 
it would not be valid beyond the range where the universe may be seen as 
homogeneous, probably no more than 100 Mpc. 

In order to show the previous effect, and, more generally, to compare 
the statistical properties of different samples, it is necessary to take into 
account the strong density variations between these samples. The conven- 
tional prescriptions for the calculation of ~: may not be most convenient. 
This is why ML1 and ML2 proposed to use an intrinsic normalization for 
the estimations of ~:. This prescribes using for normalization, not the uni- 
versal value of  the density (which, being unknown, has to be guessed), but 
the one derived from the catalog itself, i.e., the number of galaxies divided 
by the total volume. Although not free from effects due to the gradients of 
the density inside the sample, this indicator seems to express the desired 
properties; it has been used, for instance, to exhibit the effects reported 
above. It has also been used to test for possible segregations in the galaxy 
distribution (see below). Alimi and Blanchard (1988) and Pietronero (1987) 
also proposed normalization-free indicators in the same spirit. As a con- 
clusion, I will, however, point out that great care must be taken in drawing 
conclusions from the use of the correlation functions, because of the strong 
density fluctuations always present in the galaxy distribution. 

3.3. Segregations 

Normalization problems occur not only for absolute estimations, but 
every time the statistical properties of different samples of galaxies are to 
be compared. For instance, some models predict that samples with different 
morphologies (spiral versus elliptical galaxies), luminosities (bright versus 
faint), or surface brightness characteristics, with different sizes, localizations 
in space, etc., may have different statistics. Usually, such samples also have 
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different densities, so that strong normalization problems are present. ML1 
and ML2, for instance, have considered different (complete) subsamples 
of  the CfA, with different shapes, sizes, and locations. Although the "conven- 
t ional" normalization would have required using a universal density and a 
universal luminosity function, such quantities are not available, the 
"intrinsic" normalization was therefore used, which requires no hypothesis 
about a universal density or luminosity function of galaxies, but can be 
entirely performed from the available data (see also Alimi e t  al . ,  1988). 

3.4. High-Order Indicators 

It is clear that the two-point correlation functions are not able to express 
the whole informational content of the galaxy distribution. ~: is in fact only 
the lowest order indicator in the hierarchy of correlation functions, and 
n-point correlation functions can be defined in a similar way. For instance, 
the three-point correlation function is defined from the excess probability 
that three galaxies lie at three positions in space. This probability is written 
P(1, 2, 3 ) =  n3(1 +~:12+ ~:23+ s ~'~23) , which defines the (reduced) three- 
point function ~'123. Although the determination is quite noisy, Groth and 
Peebles (1977) showed that this function can be fitted by an expression of  
the particular form (123 = Q(~12(23+~=12~:13+ ~=13~23). The determination of  
four-point correlation functions is hardly possible, but it has been shown 
that a similar (generalized) form is compatible with the observations (Fry 
and Peebles, 1978). Measurements involving more than four points appear 
impossible for the moment. It is interesting to note that the form present 
above for the three-point function may be generalized to higher orders, 
implying that the reduced N-point  function s is a sum of products of 
the form (~=(2))N-~. This is the basic assumption of the so-called hierarchical 
models (Fry, 1986; Schaeffer, 1985). This implies that the n-point correlation 
function obeys a scaling relation: 

~:(N)(Ar~,Ar2,... , A r N ) = A ~ N ) ( r l ,  1 " 2 , . . .  , rN ) 

We have also shown that the void probability function (hereafter VPF) 
is an efficient statistical indicator, complementary to the CF, and giving 
information about the large-order correlations (two-point correlations are 
of  order two). We will also see that it does not suffer normalization problems. 

3.5. The Void Probability Function 

The VPF P0(V) is defined as the probability that a sphere of volume 
V (V = 4~'R3/3) at a random place in the catalog contains no galaxy at all. 
White (1979) has shown that it is linked to the hierarchy of correlation 
functions of  all orders (in this hierarchy, the point density and the two 
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point CF are, respectively, first- and second-order quantities). It appears, 
in this sense, complementary to the CF. Concerning normalization proper- 
ties, the VPF does not seem at first sight very attractive since it depends on 
both the volume and the density, although the two-point CF, conversely, 
depends only on the volume, not on the density (at least in principle). But 
the situation is in fact much more favorable if we do not use Po(V) as a 
function of the volume, but rather the quantity X(V) = log Po( V)/n  V. 

It has been established that different kinds of assumptions lead to what 
has been called a scaling relation for the VPF. This latter is defined by the 
prescription that the quantity X, which a priori depends on the two variables 
n (the density) and V, reduces to a function of one variable only, which is 
called the scaling variable. Schaeffer (1987) has shown that the hypothesis 
of the hierarchical models implies this relation. Schaeffer and BaIian (1988) 
also showed that it is implied by the assumption that N-point  correlation 
functions are themselves scale invariant, in the sense defined above. In these 
two cases, the scaling variable q takes the form q = nV(~), where (~) is 
defined as the integral of ( (x l ,  x2) over the two spatial variables x~ and x2, 
in two volumes V1 and V2 equal to V. It is interesting to note that these 
assumptions allowed Balian and Schaeffer (1988) to make many predictions 
concerning the distribution of the galaxies. 

It appears therefore very important to check if this property is verified 
in the true galaxy distribution. Bouchet and Lachi6ze-Rey (1986), ML1, 
and ML2 have shown, from various samples of galaxies, that the galaxy 
distribution obeys this scaling invariance. (ML2) have also shown that, if 
x (q)  shares with the CF the property of being density independenL it has 
the advantage of being almost normalization independent. This allows us 
to compare the high-order properties of different samples, without 
normalization problems. It is, for instance, a striking fact that the apparent 
existence of a segregation in clustering properties, as measured by the 
correlation functions, does not imply a corresponding segregation as 
measured by the VPF: we have shown that samples containing different 
galaxy morphological types, or of different sizes, have different values of 
two-point CF (although the sign and the level of the differences depend on 
the adopted normalization), but that there are no differences in the VPF. 
Conversely, the VPF makes a luminosity segregation apparent, although 
the two-point correlation function did not. This clearly indicates (if 
necessary) that the CF and VPF do not measure the same kind of clustering 
properties. 

Many reasons make the VPF an efficient tool to determine the statistical 
distribution of galaxies. An increasing number of papers are devoted to its 
calculation. Its main interest has probably been to allow the property of 
scale invariance to be established. This made it possible to compare sample 
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with different densities, with different luminosity functions, at various 
places, of different sizes, etc., without normalization problems. Moreover, 
since the VPF has been predicted by dynamical or statistical models, there 
is a reference value to compare with observations. By the way, I suggest to 
those involved in numerical simulations to use it as a test, as it has been 
done with the CF. Finally, in contrast with the two- (or three-) point CF, 
the VPF gives information at the highest orders, and it becomes increasingly 
clear that the most specific features of the galaxy distribution can be 
expressed through such high-order indicators only. The present data are 
unfortunately too scarce for the VPF to be applied to the study of the large, 
linear strucures, but this indicator will probably appear very useful in the 
near future. In addition, it may be that voids, filaments, sheets, etc., are 
also present at the nonlinear scales. This would explain the apparent 
organization of the galaxies in the catalogs in the form of a network of 
bubbles, or cells, or of a spongelike structure, etc. If this impression is true, 
it will soon appear necessary to give a quantitative account of this network, 
by measuring the dimensionality, the connectivity properties, the sharpness 
of the edges, etc. 

On the other hand, it is presently very difficult to predict statistical 
properties from dynamical studies since, at nonlinear scales, we are not 
able to follow the dynamics. This would certainly require the use of different 
kinds of statistics. 

Different suggestions have been made recently to these ends, with more 
or less success. The VPF is only a first step, including information at all 
orders. It is encouraging that scale invariance has been shown from its use. 
Among other methods, we could retain percolation (Shandarin and 
Zeldovich, 1986), analysis in terms of fractals or multifractals (Jones et  al., 
1987; Balian and Schaeffer, 1988), topology analysis (Gott et al., 1986; 
Melott et  al., 1988), tesselation (Icke and van de Weygaert, 1987), and 
probably many others of which the author is unaware. Unfortunately, these 
different indicators give different kinds of information, not easy to compare 
among themselves or with the predictions of dynamical models. There is 
no general agreement concerning the optimal analysis, which ideally should 
be related to some dynamical processes. I will give the broad lines of a 
possible approach derived from the so-called coagulation formalism. 

4. S T A T I S T I C S  OF D I S O R D E R E D  M E D I A  

The study of the galaxy distribution in recent years has led to a picture 
very different to what was proposed before: the distribution of galaxies 
appears highly irregular and disordered, with the presence of peculiar 
features like filaments or sheets around voids, i.e., large regions devoid of 
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luminous matter. The visual appearance of the catalogs is the first clue that 
this is so, and one only needs to look at the first slices of the new CfA 
catalog (De Lapparent et al., 1986) or the SSRS catalog (da Costa et al., 
1988) to be convinced. More quantitatively, this impression is confirmed 
by many facts: the presence of density fluctuations at all scales, up to those 
of the catalog themselves, and maybe beyond; the reported tendency of the 
two-point correlation function to vary with the depth of the catalog; the 
presence of voids at all scales, and especially large ones; the presence of 
filaments; etc. 

The two-point CF are not sufficient to give an account of  this disordered- 
structure, and the VPF approach is only a first step. It is presently not clear 
how efficient are the different indicators--percolation, topology, multifrac- 
tals, e tc . --nor  how they compare. 

The disordered aspect of the universe is the cause of the difficulties 
encountered with the conventional statistical approach. This suggests turn- 
ing toward the statistics of  disordered media, which is an increasingly 
well-studied field in physics, and trying to adapt its methods for the study 
of the universe (remember that the use of CF also resulted from the 
adaptation of techniques from a very different field than astrophysics). This 
is already the case for fractal or multifractal analysis, which, although 
mainly developed in microscopic statistics, is increasingly used in 
astrophysics. 

Another approach, also derived from the study of disordered media, 
could be of  interest: it is derived both from the study of percolation clusters 
and from the dynamics of the so-called cluster "aggregation," "coagula- 
tion," and "gelification" models. 

4.1. The Coagulation Method 

I will not present the details of the method, but only the general 
principle. Starting from the distribution of points to be studied, we create 
a geometrical object--hereafter  the "aggregate"--by the following rule: 
given a length L (the "scale variable"), we "fill up"  the space around each 
point (galaxy) of the distribution, up to distance L. In other words, we 
consider a distribution of  spheres of radius L, each having as center one 
galaxy of the distribution. Some spheres are isolated and some merge to 
form what I will call a cluster. The geometrical object of interest--the 
aggregate--is the ensemble of all these clusters and of the isolated spheres 
(which can be considered as clusters of multiplicity 1). Each cluster is 
characterized by the volume V that it occupies in space. Of course, the 
volume of a cluster of multiplicity 1 is 4~rL3/3, but the volume of a cluster 
of multiplicity k is between this value and k times this value. The interesting 
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quantity is the distribution of clusters, as a function of the volumes V, for 
a given value of  the scale variable L: N(L, V). The "coagulation" method 
is based on the use of N(L, V) as a statistical indicator. The "aggregate" 
so defined is an interesting geometrical object. It reflects in some sense the 
smoothed distribution, with a smoothing length L. 

The calculation of N is without any special problem and we have 
already developed a code for such a purpose. This indicator characterizes 
some features of  the distribution that the conventional ones are unable to 
take into account. Additionally, it may easily be related to other indicators, 
which is very convenient for a synthetic approach. The link with the VPF 
is, for instance, very straightforward and has already led to a very efficient 
method of evaluating the VPF in the galaxy distribution. 

The connection with fractals is contained in the method, since the 
different objects defined during this analysis--the aggregate, the clusters-- 
are themselves fractal. There is also a link with the percolation, since the 
"aggregate" is of the same nature as a percolation cluster. This method is, 
however, richer, since it considers information not only about the percola- 
tion cluster (i.e., the largest cluster in the sample), but also about clusters 
of  all sizes (Stanley 1986). However, the tools used for percolation s tudies--  
i.e., the whole series of  different fractal dimensions (Stanley 1986)--are 
also useful in this case. Also, the method presents some analogies with the 
"topological" analysis of Gott  et al. (1986). It is also interesting to remark 
that this indicator is able to express the dimensionality (or dimensionalities) 
of the distribution, so that it might be used to check the presence of  sheets, 
filaments, etc. This approach seems therefore a very efficient way to express 
results obtained with one method in the language adapted to another and, 
in our sense, in a more synthetic way. 

Many benefits of  this method come from the work already done with 
this formalism in a very different context. A similar quantity has been 
introduced for the study of  the cluster aggregation models (Kolb et at., 
1986), where the dynamical growth of the clusters is considered. There is 
substantial hope that this may be applied to the dynamics of galaxy forma- 
tion and this could make it possible to follow some statistical characteristics 
of the matter distribution. 
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